Systems redox biology analysis of a novel family of naturally-derived anti-oxidants/anti-inflammatories.

University of Edinburgh

Active award

Student: Hannah Johnston

Year Award Started: 2013

The regulation of cellular redox potential is important in controlling the behaviour of healthy cells and its dysregulation is implicated in the initiation and proliferation of several disease states. Redox potential is a measure of the driving force for oxidation and oxidative changes are known to be important in the initiation or proliferation of a variety of diseases including arthritis, chronic obstructive pulmonary disease (COPD), Alzheimer’s disease, age-related macular degeneration and multiple sclerosis. Aquapharm Biodiscovery Ltd. has recently discovered a new family of molecules which have therapeutic potential as anti-oxidants or anti-inflammatory drugs in diseases such as those listed above. It is thought that this family of molecules works by interacting with pathways involved in cellular redox regulation. Our aim in this project is to use a combination of cutting-edge biophysical techniques, established molecular biology assays and a new approach to visualisation and interpretation of this data to understand the mode of action of Aquapharm’s therapeutic molecules with a view to optimising their effect. Through combining quantitative measurements with a systems biology approach we will produce a quantitative map of redox potential distribution in the cell that offers a completely new way to analyse the effects of molecules which alter redox-regulation.

Research area: Infections, inflammation or immunology

Supervisors:

Dr Colin Campbell
School of Chemistry
Dr Dominic Campopiano
School of Chemistry

Smith and Nephew Plc